The development of the *Australian Architectural Education and Competency Framework (AAECF)* is a joint project in 2015 of the Australian Institute of Architects (the Institute), Architects Accreditation Council of Australia (AACA), Association of Architecture Schools in Australasia (AASA) and Australian Deans of Built Environment and Design (ADBED).

The notes below and the attached *AAECF Briefing Document* are to provide a pre-briefing to participants in the national consultation process. A more detailed explanation will be given in a Powerpoint presentation by Kirsten Orr at the start of the meeting.

Participants are asked to familiarise themselves with the content of the attached figures, paying particular attention to:

- Mapping of the relevant Performance Criteria from the new *National Standard of Competency for Architects* to the seven Threshold Learning Outcomes (*Figure 4*). What is your opinion about the way the Performance Criteria have been clustered around specific Threshold Learning Outcomes? Is the alignment appropriate?

- Wording of the 36 Framework Statements (*Figures 5 – 12*). What is your opinion about these statements?
  - Are all of the knowledge and skills essential to architectural education captured by the combination of Performance Criteria and Framework Statements?
  - Is the wording of the Framework Statements appropriate / meaningful?
  - Are there refinements that you think should be made to the Framework Statements?

**Background**

Work on the *AAECF* completed to date includes,

- Recommendations to the AACA on the interpretation and implementation of the new *National Standard of Competency for Architects* (2015) for the purposes of accreditation of architecture programs under the *Australia and New Zealand Architecture Program Accreditation Procedure (ANZAPAP)*;

- Identification of additional knowledge and skills essential to architectural education but not captured by the relevant Performance Criteria in the *Standard*;

- Implementation strategies necessary to ensure appropriate graduate outcomes that meet professional and university requirements;

- Documentation of the alignment between the *Standard* and other mandatory federal government-imposed requirements for higher education, including the *Learning and Teaching Academic Standards for Architecture* (2011) and *Australian Qualifications Framework* (2013).

The first draft of the *AAECF* was completed in July 2015 by Associate Professor Kirsten Orr (Chair), Professor Stephen Loo and Dr Ceridwen Owen, with additional input from Professor Susan Savage and Rob McGauran. It has been accepted by the Liaison Group of the Institute and AACA.

A national consultation process to test and refine the *AAECF* will be undertaken from November 2015 – February 2016. It will capture feedback from representatives from all Australian States and Territories, including Institute and AACA nominees, architectural practitioners experienced in accreditation processes and key Heads of Schools of Architecture.
Detailed briefing notes

- This project is situated at an important interface between three different mandatory sets of requirements that impact on the curricula and delivery of university architecture programs (refer Figure 1):

  1. **National Standard of Competency for Architects** (AACA, 2015)
     The Performance Criteria from the Standard underpin the Australia and New Zealand Architecture Program Accreditation Procedure (ANZAPAP);

  2. **Learning and Teaching Academic Standards for Architecture** (ALTC, 2011)
     Seven tightly worded meta-statements called Threshold Learning Outcomes encapsulate the required learning and teaching outcomes of university architecture programs. These were developed in 2010 through an extensive consultation process across the profession and academia (refer Figure 2);

     The AQF underpins national regulatory and quality assurance arrangements for education and training, and defines expected learning outcomes for each qualification type, including Level 9 Masters Degree, which is the level of the Master of Architecture qualification.

- The AAECF project has reviewed the new National Standard of Competency for Architects to identify the Performance Criteria most relevant to the accreditation of architecture programs. 37 Performance Criteria will be referenced into the Australia and New Zealand Architecture Program Accreditation Procedure (ANZAPAP)

- Levels of achievement expected of graduates of Masters of Architecture are established for each Performance Criterion from the Standard, with reference to AQF definitions. The three levels of achievement are called Capability Categories (refer Figure 3):
  - **Knowledge (K)** = 15 Performance Criteria (lowest level of graduate capability)
  - **Skills (S)** = 12 Performance Criteria
  - **Application of Knowledge and Skills (A)** = 10 Performance Criteria (highest level of graduate capability)

The major issues being addressed by the AAECF are:

  1. **How can requirements from the new Standard be most effectively integrated into the ANZAPAP accreditation procedure?**
     The new Standard presents challenges for architectural education because of the repetition in Performance Criteria that inevitably occurs between the different Elements, and the structure of the Standard as a linear architectural design and delivery process that is difficult to simulate/replicate in the university context.

  2. **How can the Performance Criteria from the new Standard be meaningfully mapped across onto the seven different Subject Areas of a university architecture program?**

  3. **How can the Performance Criteria be genuinely engaged with and interpreted within the university setting?**

- Performance Criteria are too repetitive and the seven Subject Areas assessed by the ANZAPAP are too broad to accurately map against each other. This poor interface results in the Performance Criteria tending to cluster around only three of the seven Subject Areas (Design, Technical Studies, Practice). More detailed Framework Statements are required to meaningfully integrate the Performance Criteria with the seven Subject Areas within a typical university architecture program.
Performance Criteria can be successfully mapped against the Threshold Learning Outcomes, allowing them to be clustered into relational subsets (refer Figure 4). However, there are two Threshold Learning Outcomes for which it is impossible to identify relevant Performance Criteria. This demonstrates that the Performance Criteria do not capture all of the essential elements of an architectural education. For example, Threshold Learning Outcome 1.2 relates to research and emergent knowledge, the engagement with which is pivotal to higher education, but for which there are no Performance Criteria.

It is not possible to map the Threshold Learning Outcomes against individual Subject Areas. Therefore Framework Statements are required to relate the Threshold Learning Outcomes to the seven Subject Areas within a university architecture program.

The proposed Framework Statements attempt to provide a clearer and broader understanding of the meaning of the Performance Criteria within the context of each of the seven Subject Areas assessed by the ANZAPAP. The proposition is that if a university architecture program meets the requirements of the Framework Statements, it will also satisfactorily address the mandatory Performance Criteria from the Standard, as well as the federal government requirements embodied in the Threshold Learning Outcomes and AQF.

Figure 5 is the matrix of Framework Statements to be tested and refined during the national consultation process. It comprises 36 statements that relate the Threshold Learning Outcomes to the seven Subject Areas of a university architecture program. The wording of each statement is informed by the specific Performance Criteria it relates to.

Figures 6 to 12 are organised by Threshold Learning Outcome (1.1 – 3.3) and interrogate how the 37 relevant Performance Criteria from the new Standard might be implemented in the ANZAPAP; how they might be interpreted in the context of university architecture programs; and how they might be genuinely engaged with in the curricula of the seven Subject Areas.

Conclusion

The AAECF allows the Standard to be interpreted in the context of the accreditation of university architecture programs under the ANZ APAP. It documents the alignment between the relevant Performance Criteria from the Standard and the requirements of the Threshold Learning Outcomes and AQF.

The AAECF accepts the Threshold Learning Outcomes as high-level, immutable meta-statements of the desirable qualities of architectural education. The Threshold Learning Outcomes provide the organising principle for the relevant Performance Criteria from the Standard.

The AAECF accepts the convention of 7 Subject Areas typical of university architecture programs, but renames them for contemporary relevance. An AAECF statement has been developed for each of the Subject Areas to describe the learning outcome expectations for graduates for each Threshold Learning Outcome and related Performance Criteria.

Associate Professor Kirsten Orr
28 October 2015
University of Technology Sydney
Chair Australian Architectural Education and Competency Framework
Chair National Education Committee
Chair NSW Education Committee
Figure 1: The AAECF is at the interface between three mandatory sets of requirements that impact on the design of curricula and delivery of architectural education.

National Standard of Competency for Architects
37 x Performance Criteria
+ 3 x Levels
5 x Knowledge Domains

Australian Architectural Education and Competency Framework (AAECF)

Architecture Learning and Teaching Academic Standards Statement
7 x Threshold Learning Outcomes

Australian Qualifications Framework Level 9 Master by Coursework
3 x Capability Categories

Australia and New Zealand Architecture Program Accreditation Procedure (ANZAPAP)
7 x Subject Areas
Graduates of the Master of Architecture will be capable of:

Knowledge

1.1 Identifying, explaining and working with appropriate knowledge of architecture, its history and precedents and with knowledge of people, environments, culture, technology, history and ideas pertinent to architectural propositions

1.2 Researching and evaluating emergent knowledge as it becomes necessary to fulfil the profession’s role in society

Graduates must be able to draw upon, interpret and integrate information from the history and precedent of the discipline of architecture and from a range of other fields depending on the architectural brief at hand. These knowledge fields are diverse and, therefore, ability must be developed to evaluate and build upon new information emerging in relevant fields. Graduates will be greatly assisted in the development of appropriate knowledge by exposure to and interaction with a range of ideas from across a variety of fields.

Design

2.1 Propositional, imaginative, iterative, integrated thinking to synthesise complex architectural designs

2.2 Supporting their decision-making using evidence-based, reasoned argument and judgement pertaining to architectural propositions

Architectural designing is a complex heuristic process characterised by creative thinking. Graduates must be able to use their knowledge of various fields to produce designs for complex buildings and spaces at a variety of scales and for a range of purposes. To do so, graduates will be required to imagine, represent and test their ideas for possible solutions in order that judgements about the efficacy of proposed designs can be made prior to these designs being committed to procurement. Given the range and extent of information that might be considered in proposing architectural designs and the need to produce designs that effectively use resources, graduates must be able to explain and justify their propositions drawing on evidence and exercising judgement.

Professional practice

3.1 Communicating with a variety of audiences in appropriate ways

3.2 Demonstrating their understanding of architecture’s status as an ethical service-oriented profession committed to responsible care for the inhabited environment

3.3 Engaging proactively in the effective procurement of architectural propositions

Graduates contributing to architectural practice, or an allied field, will use their skills in a variety of settings amongst colleagues and clients from a wide range of disciplines and backgrounds. Graduates must understand the roles of all participants in the project procurement process and strive to ensure that all contributions are effectively considered. In presenting architectural propositions to clients and/or other stakeholders, graduates must be able to communicate in a way that is fit for purpose and considerate of audience needs. This includes the need to communicate with other experts. In all their work graduates have the capability to influence and alter the state of the natural and built environments. Graduates must understand the future impacts of proposals on the lives of the people and the quality of environments affected by their work and must behave in an appropriate way in regulatory and contractual contexts.
Figure 3: Capability Categories

Levels of achievement expected of graduates of a Masters of Architecture are established for each Performance Criterion from the Standard, with reference to Australian Qualifications Framework definitions. The three levels of achievement are called Capability Categories.

Knowledge (K)
Knowledge is the ability to retrieve, recognise and recall relevant information and to grasp the meaning of material through interpreting, summarising, and explaining. The AQF defines “Knowledge” as the “advanced and integrated understanding of a complex body of knowledge in one or more disciplines or areas of practice.”

Verbs:
appreciate, classify, consider, compare, comprehend, define, describe, draw upon, evaluate, exemplify, identify, illustrate, infer, relate, understand

Evidence provided to a National Visiting Panel:
Evidence of the breadth of disciplinary knowledge in each subject area will be articulated in unit outlines, lecture materials and assessment criteria.

Skills (S)
Skills are the ability to perform discrete activities and make judgements in new and concrete situations informed by disciplinary knowledge including the use of methods, techniques and technologies, concepts, principles, laws and theories. The AQF defines “Skills” as “expert, specialised cognitive and technical skills in a body of knowledge or practice to independently:

• Analyse critically, reflect on and synthesis complex information, problems, concepts and theories
• Research and apply established theories to a body of knowledge or practice
• Interpret and transmit knowledge, skills and ideas to specialist and non-specialist audiences.”

Verbs:
analyse, appraise, articulate, collaborate, coordinate, demonstrate, describe, design, document, draw, formulate, interpret, investigate, narrate, negotiate, predict, prepare, present, reason, represent, research, test

Evidence provided to a National Visiting Panel:
Evidence of disciplinary skills in each subject area will be articulated in discrete assignment tasks including examination papers, essays, reports, drawings, models and other multi-media presentations.

Application of Knowledge and Skills (A)
Application is the ability to constructively participate, collaborate and invest design ambition in the creative synthesis of reasoning, knowledge, expert judgement and application of skills to unique and complex situations. The AQF defines “Application of Knowledge and Skills” as demonstrating “autonomy, expert judgement, adaptability and responsibility as a practitioner or learner.”

Verbs:
compose, create, critique, design, disseminate, distil, extend, generalise, generate, implement, inform, interrogate, justify, resolve, specify, synthesise, translate

Evidence provided to a National Visiting Panel:
Evidence of the application and synthesis of disciplinary knowledge and skills across all subject areas will be articulated in substantial project-based student work.
Figure 4: Mapping each Performance Criterion only once against Threshold Learning Outcomes allows Performance Criteria to be clustered in subsets.

Threshold Learning Outcomes

- 1.1 Identifying, explaining and working with appropriate knowledge of architecture, its history and precedents and with knowledge of people, environments, culture, technology, history and ideas pertinent to architectural propositions. (K)
- 1.2 Researching and evaluating emergent knowledge as it becomes necessary to fulfil the profession’s role in society. (K)
- 2.1 Propositional, imaginative, iterative, integrated thinking to synthesise complex architectural designs. (S-A)
- 2.2 Supporting their decision-making using evidence-based, reasoned argument and judgement pertaining to architectural propositions. (S)
- 3.1 Communicating with a variety of audiences in appropriate ways. (S)
- 3.2 Demonstrating their understanding of architecture’s status as an ethical service-oriented profession committed to responsible care for the inhabited environment. (A)
- 3.3 Engaging proactively in the effective procurement of architectural propositions. (A)

Performance Criteria

1.4 Identification of factors that may impact on client project requirements and objectives. (S)
1.5 Evaluation of design options against values of physical, environmental and cultural contexts. (K)
1.2 Establishment, analysis and evaluation of client project requirements and objectives. (S)
1.7 Preparation of project brief for approval by client and relevant stakeholders. (S)
2.1 Identification, analysis and integration of information relevant to the brief of project. (A)
2.2 Application of principles controlling planning, development and design for the project site. (A)
3.1 Design response integrates the objectives of brief, user intent and built purpose. (S)
3.2 Application of creative imagination, aesthetic judgement and critical evaluation in formulating design options. (A)
3.3 Design response incorporates assessment of the physical location and relevant wider regional, contextual and environmental issues. (A)
3.4 Exploration and application of ordering, sequencing and modelling of three-dimensional form and spatial content. (S)
4.1 Evaluation of design options in relation to project requirements. (S)
4.2 Application of creative imagination aesthetic judgement to produce coherent design. (A)
4.3 Investigation and integration of appropriate structural, construction, service and transport systems in the project design. (A)
4.5 Investigation and integration of appropriate material selection for the project design. (A)
5.1 Application of creative imagination and aesthetic judgement in producing a resolved project design in regard to site planning, physical composition and spatial planning as appropriate to the project brief. (A)
5.2 Resolution of project design addressing all building occupancy and functional aspects including spatial requirements and relationships and circulation aspects. (A)
5.3 Evaluation and integration of regulatory requirements. (S)
6.1 Evaluation of factors influencing and impacting on project cost. (K)
6.2 Design response incorporates assessment of relevant legislation, codes and industry standards. (S)
6.3 Assessment of the economic impact on the project of design strategies and options. (K)
6.4 Assessment and integration of construction systems and materials consistent with project brief. (S)
6.5 Coordination and integration of appropriate environmental systems, including for thermal comfort, lighting and acoustics. (A)
6.6 Integration of materials and components based upon an understanding of their physical properties. (S)
6.7 Formation of quality and performance standards with regard to selected materials, finishes, fittings, components and systems. (A)
7.1 Application of manual and digital graphic techniques and modelling to describe three-dimensional form and spatial relationships. (S)
7.2 Continuing coordination and integration of information and project material from relevant consultants, specialists and suppliers. (K)
7.3 Timely completion and communication of accurate and comprehensible documents that will include, as required, drawings, models, specifications, schedules and other relevant modes of information. (S)
8.1 Preparation & endorsement of an agreement between client and architect. This agreement will clearly communicate terms, services to be provided, and fees appropriate for the scale and type of project. (K)
8.2 Knowledge of different procurement processes available and evaluation of the impact these have on the project. (K)
8.3 Inclusion of expertise of relevant specialists and consultants in developing the project design. (K)
8.4 Selection processes for appropriately qualified contractors is in accordance with procurement method and project contract. (K)
8.5 Knowledge and implementation of appropriate practice model to ensure efficient, effective and ethical professional service. (K)
8.6 Knowledge of the legal and ethical obligations relating to copyright and intellectual property requirements. (K)
8.7 Knowledge and application of professional ethics and ethical practices in respect to practice management and provision of professional services. (K)
8.8 Knowledge of legal and regulatory requirements and obligations in regard to architectural practice, practice management and registration as an architect. (K)
**Figure 5:** The matrix of Framework Statements to be tested and refined during the consultation process

<table>
<thead>
<tr>
<th>Threshold Learning Outcomes</th>
<th>Design</th>
<th>Technology</th>
<th>History &amp; Theory</th>
<th>Practice</th>
<th>Ecology</th>
<th>Communication</th>
<th>Diversification &amp; Specialisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Identifying, explaining and working with appropriate knowledge of architecture, its history and precedents and with knowledge of people, environments, culture, technology, history and ideas pertinent to architectural propositions</td>
<td>Knowledge of precedents, processes and contextual factors influencing architectural design</td>
<td>Knowledge of traditional and contemporary structural, construction, service and material systems</td>
<td>Critical understanding of historical and theoretical knowledge in architecture and the design of the built environment</td>
<td>Knowledge of the social, cultural, legal and ethical structures influencing architectural practice</td>
<td>Knowledge of ecology encompassing the complexity of relationships between people and natural and built environments</td>
<td>Knowledge of methods for the expression, representation, analysis and articulation of architectural design</td>
<td></td>
</tr>
<tr>
<td>2.1 Propositional, imaginative, iterative, integrated thinking to synthesise complex architectural designs</td>
<td>Research skills to advance knowledge of contemporary and emergent design thinking and processes in response to social issues and challenges</td>
<td>Research skills to advance technical knowledge of contemporary and emergent structural, construction, service and material systems at various scales</td>
<td>Research skills in history and theory to support scholarly discourse and contribute to the advancement of disciplinary knowledge</td>
<td>Research skills supporting lifelong learning in the context of change and transformation in the architectural profession and related sectors to fulfil the profession's role in society</td>
<td>Research skills to support critical thinking on the diversity of environmental, social and cultural values in sustainability to inform design and respond to contemporary social issues and challenges</td>
<td>Research skills to advance knowledge of contemporary and emergent communication practices supporting critical and inventive thinking</td>
<td></td>
</tr>
<tr>
<td>2.2 Supporting their decision-making using evidence-based, reasoned argument and judgement pertaining to architectural propositions</td>
<td>Application of imaginative and iterative thinking to synthesise complex factors in the generation of architectural propositions including critical appraisal of requirements of the project brief and site</td>
<td>Application of technical and creative skills to integrate structural, construction, service and material systems at various scales in architectural design propositions</td>
<td>Application of critical skills engaging historical and theoretical knowledge to generate complex architectural propositions</td>
<td>Application of knowledge of legislative frameworks encompassing planning and building processes for the effective procurement of architectural propositions integrating various relevant legislative, client and user requirements</td>
<td>Application of technical, theoretical and creative skills to generate ecologically informed architectural propositions engaging environmental, social and cultural values</td>
<td>Application of knowledge and skills in diverse modes of communication to inform design thinking</td>
<td></td>
</tr>
<tr>
<td>3.1 Communicating with a variety of audiences in appropriate ways</td>
<td>Cognitive and creative skills to critically evaluate and justify design concepts, decisions and solutions</td>
<td>Technical and creative skills to evaluate and justify structural, construction, service and material systems at various scales in architectural design propositions</td>
<td>Critical skills to position architectural propositions in relation to relevant domains of knowledge</td>
<td>Using skills pertaining to professional practice to support decision-making including consideration of factors of cost and the integration of legislation, codes and industry standards</td>
<td>Technical, theoretical and creative skills to evaluate and justify architectural propositions in an ecological context</td>
<td>Skills in communication and research to express ideas, to access, use and interpret data, and to justify decisions across all stages of an architectural project</td>
<td></td>
</tr>
<tr>
<td>3.2 Demonstrating their understanding of architecture's status as an ethical service-oriented profession committed to responsible care for the inhabited environment</td>
<td>Articulation and representation of architectural design ideas and propositions using an appropriate variety of media</td>
<td>Knowledge and skills in documentation employing appropriate conventions and graphic techniques to communicate the technical requirements of the design</td>
<td>Skills in oral, written, visual, digital and material media to communicate architectural ideas to a variety of audiences</td>
<td>Knowledge and skills in technical, theoretical and creative skills to generate ecologically informed architectural propositions</td>
<td>Knowledge and skills in communicating the ecological factors informing design to specialist and non-specialist audiences</td>
<td>Knowledge and skills in supporting communication of 3D form and spatial relationships with diverse audiences</td>
<td></td>
</tr>
<tr>
<td>3.3 Engaging proactively in the effective procurement of architectural propositions</td>
<td>Knowledge and skills to critically and ethically appraise and creatively respond to cultural and legal considerations in architectural design</td>
<td>Knowledge of project procurement methods and underpinning ethical, legal and regulatory factors</td>
<td>Critical skills to interrogate architecture's position as an ethical service-oriented profession and the implications for design</td>
<td>Knowledge of the architect's professional, ethical and legal responsibilities to evaluate and mitigate impacts of practice including models of practice and management, intellectual property, and relationships with consultants, clients, users, and the broader public</td>
<td>Knowledge of the architect's responsibility for ecologically sustainable design including participatory and collaborative processes that engage the values of multiple stakeholders</td>
<td>Skills in engaging and communicating with the diverse audiences implicated in the design of the built environment</td>
<td></td>
</tr>
</tbody>
</table>
1.4 Identification of factors that may impact on client project requirements and objectives.

4.2 Evaluation of design options against values of physical, environmental and cultural contexts.

Performance Criterion 1.4 is directly tied to the Framework Statement for Design.

Performance Criterion 4.2 is directly tied to the Framework Statement for Ecology.

Note correlation in wording between PC 1.4 and the Design statement; PC 4.2 and the Ecology statement.

Other Framework Statements for Subject Areas relate to Threshold Learning Outcome 1.1 but are not directly tied to any specific Performance Criteria. These are important for the achievement of well-rounded graduate learning outcomes.

Threshold Learning Outcome 1.1 concerns knowledge as it informs the making of architectural propositions.
Figure 7

Performance Criteria

AAECF Framework Statements

Threshold Learning Outcomes

**Design**
Research skills to advance knowledge of contemporary and emergent design thinking and processes in response to social issues and challenges.

**Technology**
Research skills to advance technical knowledge of contemporary and emergent structural, construction, service and material systems at various scales.

**History & Theory**
Research skills in history and theory to support scholarly discourse and contribute to the advancement of disciplinary knowledge.

**Practice**
Research skills supporting lifelong learning in the context of change and transformation in the architectural profession and related sectors to fulfil the profession’s role in society.

**Ecology**
Research skills to support critical thinking on the diversity of environmental, social and cultural values in sustainability to inform design and respond to contemporary social issues and challenges.

**Communication**
Research skills to advance knowledge of contemporary and emergent communication practices supporting critical and inventive thinking.

Note that there are no Performance Criteria that tie to this Threshold Learning Outcome.

Despite no Performance Criteria tying to this Threshold Learning Outcome, it is expected that curricula for each Subject Area should integrate engagement with research and emergent knowledge. This is a good example of why the Framework Statements are useful.

Threshold Learning Outcome 1.2 concerns knowledge as it informs the making of architectural propositions.

1.2 Researching and evaluating emergent knowledge as it becomes necessary to fulfil the profession’s role in society K
### Performance Criteria

| 1.2 | Establishment, analysis and evaluation of client project requirements and objectives. | S |
| 1.7 | Preparation of project brief for approval by client and relevant stakeholders. | S |
| 2.1 | Identification, analysis and integration of information relevant to siting of project. | A |
| 3.1 | Design response integrates the objectives of brief, user intent and built purpose. | S |
| 3.2 | Application of creative imagination, aesthetic judgement and critical evaluation in formulating design options. | A |
| 4.1 | Evaluation of design options in relation to project requirements. | S |
| 4.3 | Application of creative imagination aesthetic judgement to produce coherent design. | A |
| 5.2 | Resolution of project design addressing all building occupancy and functional aspects including spatial requirements and relationships and circulation aspects. | A |

### AAECF Framework Statements

**Design**
- Application of imaginative and iterative thinking to synthesise complex factors in the generation of architectural propositions including critical appraisal of requirements of the project brief and site.

**Technology**
- Application of technical and creative skills to integrate structural, construction, service and material systems at various scales in architectural design propositions.

**History & Theory**
- Application of critical skills engaging historical and theoretical knowledge to generate complex architectural proposals.

### Threshold Learning Outcomes

| 2.1 | Propositional, imaginative, iterative, integrated thinking to synthesise complex architectural designs | S+A |

---

**Figure 8a**

Continues next page…
Continued...

<table>
<thead>
<tr>
<th>Performance Criteria</th>
<th>AAECF Framework Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2 Application of principles controlling planning, development and design for the project site.</td>
<td><strong>Practice</strong> Application of knowledge of legislative frameworks encompassing planning and building processes for the effective procurement of architectural propositions integrating various relevant legislative, client and user requirements</td>
</tr>
<tr>
<td>5.3 Evaluation and integration of regulatory requirements.</td>
<td><strong>Ecology</strong> Application of technical, theoretical and creative skills to generate ecologically informed architectural propositions engaging environmental, social and cultural values</td>
</tr>
<tr>
<td>3.3 Design response incorporates assessment of the physical location and relevant wider regional, contextual and environmental issues.</td>
<td><strong>Communication</strong> Application of knowledge and skills in diverse modes of communication to inform design thinking</td>
</tr>
<tr>
<td>3.5 Exploration and application of ordering, sequencing and modelling of three-dimensional form and spatial content.</td>
<td><strong>S+A</strong> Propositional, imaginative, iterative, integrated thinking to synthesise complex architectural designs</td>
</tr>
<tr>
<td>2.1 Identification, analysis and integration of information relevant to siting of project.</td>
<td><strong>S</strong> Evaluation and integration of regulatory requirements.</td>
</tr>
<tr>
<td>4.3 Application of creative imagination aesthetic judgement to produce coherent design.</td>
<td><strong>A</strong> Design response incorporates assessment of the physical location and relevant wider regional, contextual and environmental issues.</td>
</tr>
<tr>
<td>3.5 Exploration and application of ordering, sequencing and modelling of three-dimensional form and spatial content.</td>
<td><strong>S</strong> Exploration and application of ordering, sequencing and modelling of three-dimensional form and spatial content.</td>
</tr>
</tbody>
</table>

**Figure 8b**
3.7 Assessment and integration of construction systems and materials consistent with project brief.

4.7 Coordination and integration of appropriate environmental systems, including for thermal comfort, lighting and acoustics.

5.5 Integration of materials and components based upon an understanding of their physical properties.

6.5 Nomination of quality and performance standards with regard to selected materials, finishes, fittings components and systems.

2.3 Evaluation of factors influencing and impacting on project cost.

3.4 Design response incorporates assessment of relevant legislation, codes and industry standards.

3.6 Assessment of the economic impact on the project of design strategies and options.

4.7 Coordination and integration of appropriate environmental systems, including for thermal comfort, lighting and acoustics.

Technology
- Technical and creative skills to evaluate and justify structural, construction, service and material systems at various scales.

Design
- Cognitive and creative skills to critically evaluate and justify design concepts, decisions and solutions.

History & Theory
- Critical skills to position architectural propositions in relation to relevant domains of knowledge.

Communication
- Skills in communication and research to express ideas, to access, use and interpret data, and to justify decisions across all stages of an architectural project.

Practice
- Using skills pertaining to professional practice to support decision-making including consideration of factors of cost and the integration of legislation, codes and industry standards.

Ecology
- Technical, theoretical and creative skills to evaluate and justify architectural propositions in an ecological context.

Supporting their decision-making using evidence-based, reasoned argument and judgement pertaining to architectural propositions.

Figure 9
<table>
<thead>
<tr>
<th>Performance Criteria</th>
<th>AAECF Framework Statements</th>
<th>Threshold Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>6.2</strong></td>
<td>Continuing coordination and integration of information and project material from relevant consultants, specialists and suppliers.</td>
<td><strong>Practice</strong>&lt;br&gt;Knowledge and skills in forms of professional communication applicable to processes of coordination, integration and exchange of information with specialist and non-specialist audiences</td>
</tr>
<tr>
<td><strong>3.8</strong>&lt;br&gt;<strong>6.4</strong>&lt;br&gt;<strong>9.8</strong></td>
<td><strong>Technology</strong>&lt;br&gt;Knowledge and skills in documentation employing appropriate conventions and graphic techniques to communicate the technical requirements of the design</td>
<td><strong>Communication</strong>&lt;br&gt;Knowledge and skills in traditional and emerging media to support communication of 3D form and spatial relationships with diverse audiences</td>
</tr>
<tr>
<td><strong>Design</strong>&lt;br&gt;Articulation and representation of architectural design ideas and propositions using an appropriate variety of media</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>History &amp; Theory</strong>&lt;br&gt;Skills in oral, written, visual, digital and material media to communicate architectural ideas to a variety of audiences</td>
<td><strong>Ecology</strong>&lt;br&gt;Knowledge and skills in communicating the ecological factors informing design to specialist and non-specialist audiences</td>
<td></td>
</tr>
</tbody>
</table>
### Performance Criteria

| 1.5 | Knowledge of different procurement processes available and evaluation of the impact these have on the project. | K |
| 1.1 | Preparation & endorsement of an agreement between client and Architect. This agreement will clearly communicate terms, services to be provided, and fees appropriate for the scale and type of project. | K |
| 4.4 | Inclusion of expertise of relevant specialists and consultants in developing the project design. | K |
| 7.1 | Identification of available procurement methods and assessment of relevance and application to the project. | K |
| 8.1 | Selection process for appropriately qualified contractors is in accordance with procurement method and project contract. | K |
| 9.1 | Knowledge and implementation of appropriate practice model to ensure efficient, effective and ethical professional service. | K |
| 9.5 | Knowledge of the legal and ethical obligations relating to copyright and intellectual property requirements. | K |
| 9.6 | Knowledge and application of professional ethics and ethical practices in respect to practice management and provision of professional service. | K |
| 9.7 | Knowledge of legal and regulatory requirements and obligations in regard to architectural practice, practice management and registration as an architect. | K |

### AAECF Framework Statements

<table>
<thead>
<tr>
<th>Technology</th>
<th>Design</th>
<th>History &amp; Theory</th>
<th>Ecology</th>
<th>Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge of project procurement methods and underpinning ethical, legal and regulatory factors</td>
<td>Knowledge and skills to critically and ethically appraise and creatively respond to cultural and legal considerations in architectural design</td>
<td>Critical skills to interrogate architecture’s position as an ethical service-oriented profession and the implications for design</td>
<td>Knowledge of the architect’s responsibility for ecologically sustainable design including participatory and collaborative processes that engage the values of multiple stakeholders</td>
<td>Skills in engaging and communicating with the diverse audiences implicated in the design of the built environment</td>
</tr>
</tbody>
</table>

### Threshold Learning Outcomes

| 3.2 | Demonstrating their understanding of architecture’s status as an ethical service-oriented profession committed to responsible care for the inhabited environment | A |

**Figure 11**
Figure 12

A Framework Statement for Diversification and Specialisation will be developed as an outcome of the consultation process.

Threshold Learning Outcomes

3.3 Engaging proactively in the effective procurement of architectural propositions